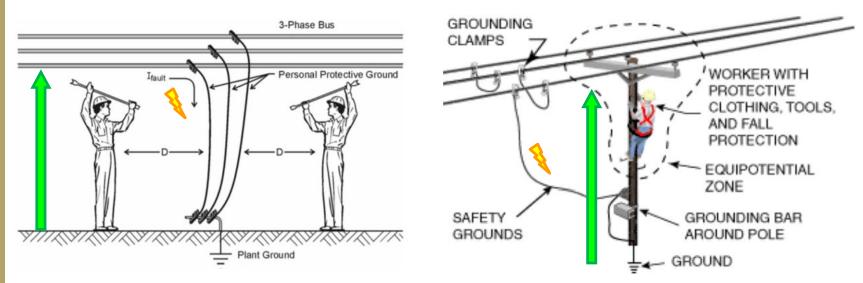


Survival Performance of New and Aged Temporary Protective Grounds

J.C. Hernandez-Mejia, Anil Poda, Caryn Riley NEETRAC

Notice

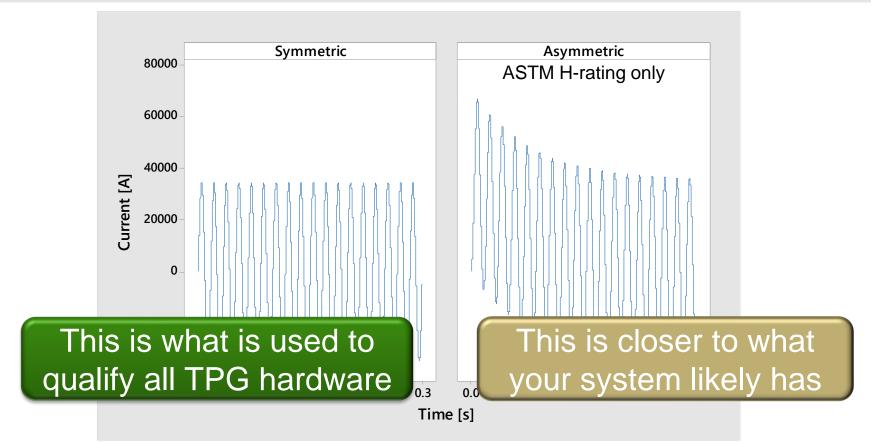

The information contained herein is, to our knowledge, accurate and reliable at the date of publication.

Neither GTRC nor The Georgia Institute of Technology nor NEETRAC shall be responsible for any injury to or death of persons or damage to or destruction of property or for any other loss, damage or injury of any kind whatsoever resulting from the use of the project results and/or data.

GTRC, GIT and NEETRAC disclaim any and all warranties, both express and implied, with respect to analysis or research or results contained in this report.

It is the user's responsibility to conduct the necessary assessments in order to satisfy themselves as to the suitability of the products or recommendations for the user's particular purpose. No statement herein shall be construed as an endorsement of any product, process or provider.

What does a TPG do?



https://testguy.net/content/269-Applying-and-Removing-Protective-Grounds

https://www.osha.gov/etools/electric-power/hazardous-energy-control/equipotential-zone

<u>Provide</u> an equipotential zone is a work zone in which the worker is protected from electric shock from differences in electric potential between objects in the work area

Symmetric & Asymmetric Fault Tests

2023 IEEE JTCM – G4 Meeting, January, Japkson SilleviEhl Performance of New and Aged Temporary Protective Grounds

Historical TPG Tests

- Review conducted of all TPG fault testing performed by NEETRAC and supportive members
 - 14 projects in total
 - Covers projects 1996 2021
 - ≈470 separate fault tests
 - Many different hardware and configurations tested
 - Tests performed according to ASTM F855
 - 80% of tests utilized asymmetric fault currents

ASTM F855 Symmetric & Asymmetric Fault Tests

	Grou	unding C Strengt	lamp Torq th, min	ue	Short Circuit Properties ⁴								
Grade	Yield ^B		Ultimate		Withstand Rating, Symmetrical kA RMS, 60 Hz			Ultimate Rating Capacity ^{CD} , Symmetrical kA RMS, 60 Hz				Continuous Current Rating, A	
	lbf-in.	n∙m	lbf-in.	n∙m	15 cycles (250 ms)	30 cycles (500 ms)	Copper Cable Size	15 cycles (250 ms)	30 cycles (500 ms)	60 cycles (1 s)	Maximum Copper Test Cable Size	RMS, 60 Hz	
1	280	32	330	37	14	10	#2	18	13	9	2/0	200	
2	280	32	330	37	21	15	1/0	29	21	14	4/0	250	
3	280	32	330	37	27	20	2/0	37	26	18	4/0	300	
4	330	37	400	45	34	25	3/0	47	33	23	250 kcmil	350	
5	330	37	400	45	43	30	4/0	59	42	29	250 kcmil	400	
6	330	37	400	45	54	39	250 kcmil or 2 2/0	70	49	35	350 kcmil	450	
7	330	37	400	45	74	54	350 kcmil or 2 4/0	98	69	48	550 kcmil	550	

Table 1 X/R = 1

^A Withstand and ultimate short circuit properties are based on performance with surges not exceeding 20 % asymmetry factor (see 9.1 and 12.3.4.2).
^B Yield shall mean no permanent deformation such that the clamp cannot be reused throughout its entire range of application.

^C Ultimate rating represents a symmetrical current which the assembly or individual components shall carry for the specified time.

^D Ultimate values are based upon application of Onderdonk's equation to 98 % of nominal circular mil area allowed by Specifications B172 and B173.

NOTE 1-TPG testing is done on complete assemblies. Assembly ratings assume the grade of lowest graded component (see 43.1.6).

TABLE 2 Ultimate Assembly Rating for High X/R Ratio Applications																		
High Asymmetrical Test Requirements																		
	Bating								X/H	= 30							_	
Grade	Bated									rrent Peak							Test	19
Size	Current								Value	es (kA)							Duration	(Mega amps ² -s)
	(kA)								Bating	X 2.69							(cycles)	
		1st	2nd	3rd	4th	5th	6th	7th	Sth	9th	10th	1 1 h	12th	13th	14th	15th	-	
1H	15	41	37	34	32	30	28	27	26	25	25	24	24	23	23	23	15	74
2H	25	68	62	57	53	50	47	45	43	42	41	40	39	38	38	38	15	208
зH	31	84	76	70	65 82	61	58 73	56 70	53	52	50	49	48	47	47	46	15	312
4H	39	105	96	88	82	77	73	70	67	52 65	50 63	62	61	60	59	58	15	312 501
5H	47	127	116	106	99	93	88	84	81	78	76	74	73	72	71	70	15	728
6H	55	148	135	124	116	109	103	98	94	91	89	87	85	84	83	82	15	997
7H	66	183	167	154	143	134	127	121	117	113	110	107	105	104	102	101	15	1523

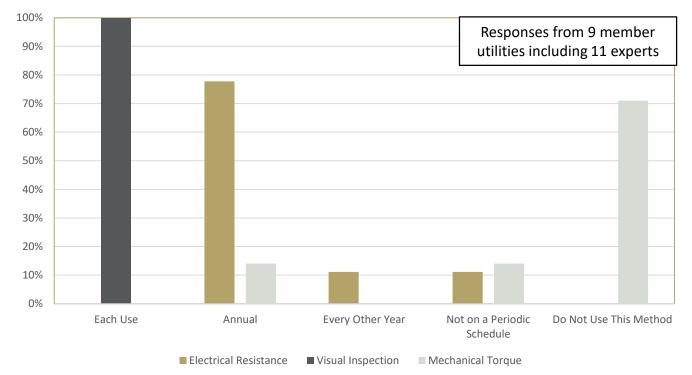
Table 2 X/R = 30

Note 1-The above current values are based on electromechanical test values.

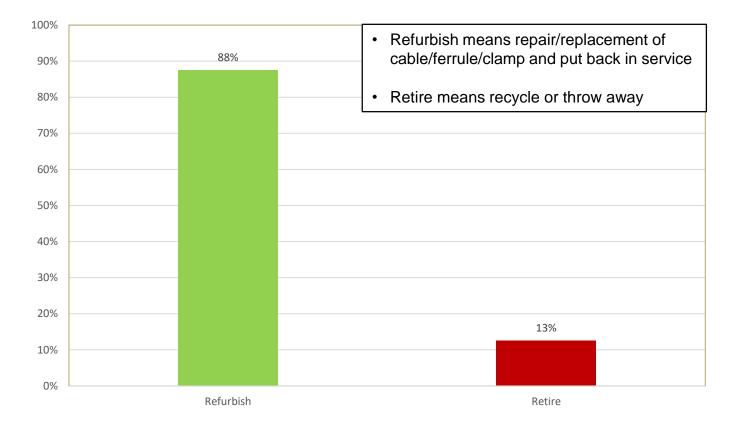
Note 2-Assemblies that have been subjected to these shall not be re-used.

Nore 3-For use with currents exceeding 20 % asymmetry factor.

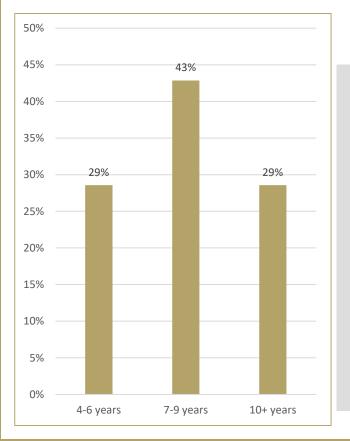
Note 4-See X4.7.2 for additional information.

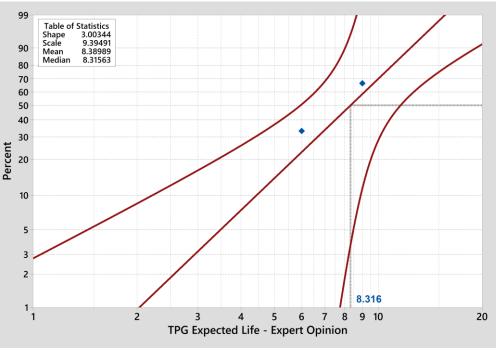

Note 5-Alternate testing circuits are available for laboratories that cannot achieve the above requirements. See Appendix X4 for details.

Extracted from ASTM F855-2015: Standard Specifications for Temporary Protective Grounds to be Used on De-Energized Electric Power Lines and Equipment

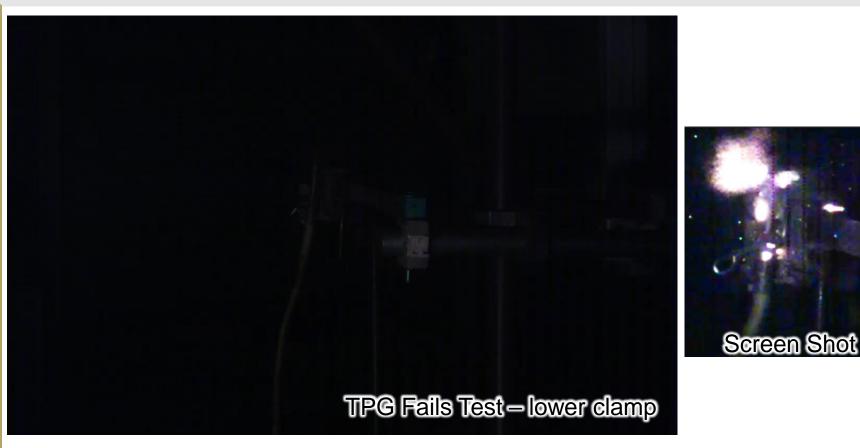

2023 IEEE JTCM – G4 Meeting, January, Jacksonville, FL

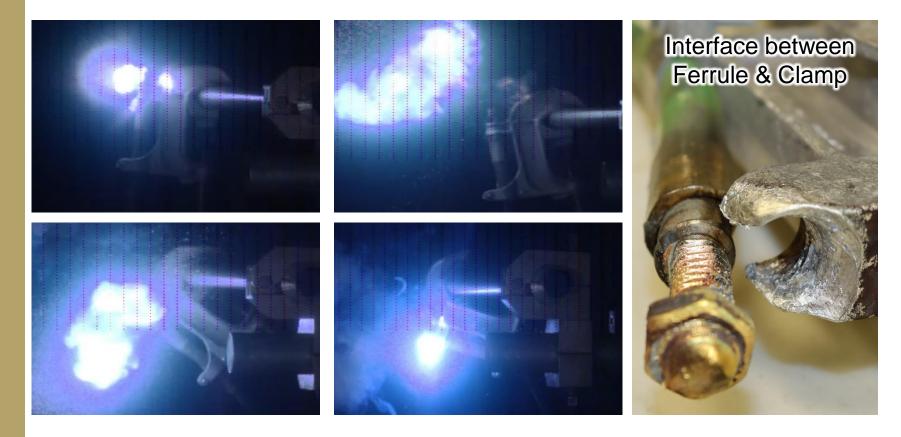
TPG Maintenance Practices


TPG Testing Frequencies

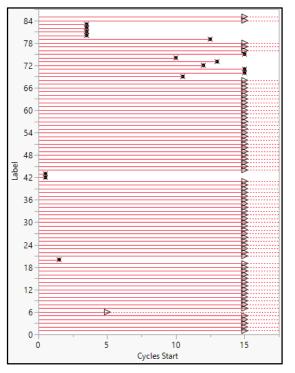

What happens to TPG's that Fail Testing?

TPG Lifetime Expectation

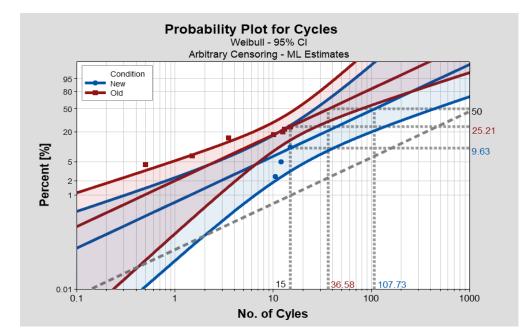

Weibull Compounded Expert Opinion – TPG Life Estimate


Example – High Speed Camera

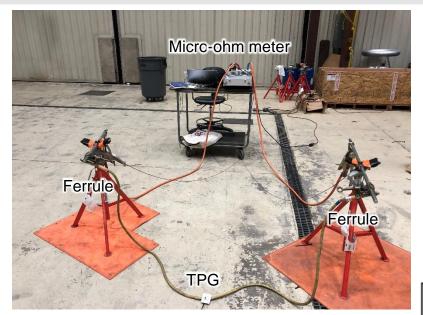
Example – High Speed Camera



Aged TPGs – Most Common Failure Mode


Performance Assessment - Overall

Event Plot



Best Case Scenario – Survival Samples consider as suspensions

Analysis considering only actual failures is being conducted

Pre-diagnostics – dc Resistance

To be correlated with High Power Test Results

fill F2249 - 20^{€1}

TABLE X2.3 R_{max} Limits – DC Resistance (mΩ) (Cable + Terminations)

Cable · Length (ft)	#2 Cable			1/0 Cable				2/0 Cable		4/0 Cable			
	5°C (41°F)	20°C (68°F)	35°C (95°F)										
1	0.48402	0.49430	0.50458	0.42276	0.42920	0.43564	0.40240	0.40757	0.41274	0.37178	0.37502	0.37826	
2	0.64804	0.66860	0.68916	0.52553	0.53840	0.55127	0.48481	0.49514	0.50547	0.42355	0.43004	0.43653	
3	0.81206	0.84290	0.87374	0.62829	0.64760	0.66691	0.56721	0.58271	0.59821	0.47533	0.48506	0.49479	
4	0.97608	1.01720	1.05832	0.73105	0.75680	0.78255	0.64962	0.67028	0.69094	0.52710	0.54008	0.55306	
5	1.14010	1.19150	1.24290	0.83382	0.86600	0.89818	0.73202	0.75785	0.78368	0.57888	0.59510	0.61132	
6	1.30412	1.36580	1.42748	0.93658	0.97520	1.01382	0.81442	0.84542	0.87642	0.63065	0.65012	0.66959	
7	1.46814	1.54010	1.61206	1.03934	1.08440	1.12946	0.89683	0.93299	0.96915	0.68243	0.70514	0.72785	
8	1.63216	1.71440	1.79664	1.14211	1.19360	1.24509	0.97923	1.02056	1.06189	0.73420	0.76016	0.78612	
9	1.79618	1.88870	1.98122	1.24487	1.30280	1.36073	1.06164	1.10813	1.15462	0.78598	0.81518	0.8443	
10	1.96021	2.06300	2.16580	1.34764	1.41200	1.47637	1.14404	1.19570	1.24736	0.83776	0.87020	0.90265	

 $Rm = 1.05 RL + 2Y m\Omega$

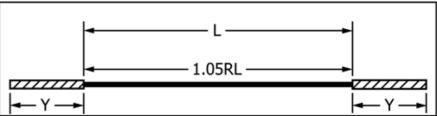


FIG. 1 Resistance and Impedance of Copper Grounding Jumper Assemblies

Correlation Between Performance and Diagnosis

		New Performance				Aged Performance						All Performance				
Pass Fail D Pass Fail O Pass F	ion	ion	Pass	Fail		on		Pass	Fail		ion		Pass	Fail		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dicti Pas	dicti	Pass 35	3		dicti	Pass	17	5		dict	Pass	52	8		
O Fail 1 I I Fail 17 6 I Fail 18	e Fai	Pre	Fail 1	1			Fail	17	6		Pre	Fail	18	7		

Case	T _{corr}	False + Err [%]	False - Err [%]
New	0.75	2.5	7.5
Aged	0.07	38.0	11.0
Both	0.35	21.2	9.4

2023 IEEE JTCM – G4 Meeting, January, Jacksonville, FL

Main Project Takeaways - Benchmarking

- All TPGs are visually inspected before each use general indications only
- Approx. 80% of utilities perform an annual dc resistance test to diagnose their TPGs. Only ~15% also use the mechanical torque test annually
- According to expert opinion, the expected life of a TPG (B50) is approx. 8 years, 10% (B10) of TPGs are retired/refurbished in 2 years while 80% (B80) are retired/refurbish in 12 years
- Approx. 90% of TPGs that fail the dc resistance or torque tests are refurbished for reuse

Main Project Takeaways - Tests

- There are substantial differences between the energy (I²t) of the symmetrical and asymmetrical (ASTM H-rating) fault current tests for the same RMS target value
- Bronze flat clamps (regardless of TPG's age condition) failed at higher failure events than the other clamp types
- Longer TPGs showed to have lower failure rates this may be related to the additional inertia they pose to damp violent ferrule movements
- In median terms, New TPGs showed lower probability of failure (~ 1.5 times smaller) when compared with Aged TPGs

Main Project Takeaways - Tests

- The dc resistance test as currently deployed may not be a good predictor for diagnosing Aged TPGs. It was better correlated with New TPG performance but exhibited considerable False+ and False- errors
- The weakest part of an aged TPG assembly seemed to be the galvanic interface between the clamp and the ferrule followed by interface between the ferrule and the cable

Open Issues and Potential Future Work

- There are still open issues that remain and may be addressed by future work, such as:
 - What are the forces or strength capabilities of the grounding assemblies during fault current conduction?
 - Are there any applicable diagnostics tools with better prediction performance?
 - What is the impact of installation torque? In the field? Is it a factor?
 - What about dc applications?
 - Understanding of contact resistances (ferrules to cable & ferrule to clamp) as assessment criteria – Why is Y (below) 16 mΩ?

The

$Rm = 1.05 RL + 2Y m\Omega$

resistance of *Y* in the *Rm* (Eq 2) has been determined by conservative analysis of the data to be 0.16 m Ω . This value is below the "fusing range" of cables that passed the fault tests. The value of *Y* = 0.16 m Ω or 2*Y* = 0.32 m Ω for all cable sizes.

Thank you for your attention

Questions?