Asset Management of MV Cables using Data Driven Health Indices for Water Treeing

Nigel Hampton, Josh Perkel, Dean Williams

10th International Conference on Insulated Power Cables

Background

- (MV) XLPE insulated cables were first installed in the early 1960's.
- Expected to perform reliably for \approx 30 yrs.
- Not aware that moisture, voltage stress, imperfections would combine to grow water trees.

• Many cables failed after few years.

• This impacted operating costs that electric utilities are still dealing with today.

Prior Work to Historical Archive

- >450 different examinations
- >40 Utilities
- Individual Reports -> Database
- >1500 large Vented Trees
- >3200 large Bowtie Trees
- Meta Data
 - Generation
 - Material
 - Neutral Condition
 - Prior Failures
- 21,000 data entries

Summary of Largest Water Trees Sites Identified (Wafer or Hot Oil)

Tree Type	Tree Length (mils)	% Growth through Wall	Initiation Point				
Example 1							
BT	100	38	5 mil Void				
BT	67	26	9 mil Contaminant				
ISAT	88	34	Unknown				
BT	35	13	11 mil Contaminant				
CSAT	80	31	Unknown				
Example 2							
BT	27	10	Small Particle				
Example 3							
ISAT	254	Full	Unknown				
BT	30	12	Small Particle				

Basic Assessments

Cables are extracted from the field

- Failed
- Siblings of Failures
- Concerning

10th International Conference on Insulated Power Cables

Evolution of Tree Length – Measured Data

- Age data are generally available
- These are grouped to determine the distribution of lengths of trees in "Age Bins" – Mean Lengths
- These estimates use all available tree lengths

Diagnostic Process to Manage the Asset

Measured Tree Diagnostic - Heuristic

Trees Trees Heuristic <50% >50% **Engineering Expertise** Survived in 80 32 Service *Trees > 50% of insulation* **Failed** in correlate with Failure in Service 76 24 **Service** Overall \rightarrow 49% **Expert Driven** Heuristics not effective

10th International Conference on Insulated Power Cables

Health Indices for Asset Management

- Health Indices summarise many inputs (Treeing, Age, History, Generation, etc)
- Most are simple "Rules of Thumb" developed based on expert opinion

$HI = \alpha Length + \beta Density + \gamma Generation + ... + ... + ...$

- In this work large datasets are available hence the most appropriate way forward is to use a "Machine Learning / Algorithmic" approach
- Determine the Weights ($\alpha,\,\beta,\,\chi,\!..\,,..\,,\!..)$
- For
 - Length Bowtie & Vented, Longest & Median
 - Density Bowtie & Vented
 - Meta Data Generation, Age

Evolving Cable Design Solutions

Generation	Insulation	Semicons	Jacket	Barrier	
0	Paper Tape	Carbon Tape	Jacket	Extruded Lead	
1	Thermoplastic	Graphite / Carbon Tape			
2	HMPWE	Extruded Thermoplastic			
3	XLPE	Graphite / Carbon Tape	None	None	
4		Extruded Thermoplastic			
5	EPR				
6			Jacket		
7	WTR	Extruded Thermoset (crosslinked)			
8	XLPE			Conductor Blocking	
9	or EPR			Blocking / Metal Barrier	
10	?	?	?	?	

Weightings for Water Tree Factors

10th International Conference on Insulated Power Cables

Health Index – Algorithm & Machine Learning

			Predict		
Health Index			Survive	Fail	
Feature Creation Complexity Reduction		Survived in Service	74	24	
		Failed in Service	35	65	
		Overa	$\parallel \rightarrow$	70%	
20 mil		Current			
	1	Opt	imum		

Generating Context

- Individual Health Index (HI)
- HI's have meaning large values = more / big trees = poorer performance
- Provide a context for future measurements
- Auto update with new data
- Provides a "relative prioritization"

Case Study

- 8 cable investigations for Observed Longest VT (% ins) 1979 vintage cables
- None of these cables have experienced a failure in service
- Interested in relative health and what actions are suggested by experience

Case Study

- 8 cable investigations for 1979 vintage cables
- 4 5 in "No Immediate Action Required"
- 2 3 in "Watch"
- 1 in "Action Required"

Conclusions

- Collated data is the basis for analyses datamining is worth the effort
 - Brings insights
 - Enables testing of "Heuristics / Tribal Knowledge"
- Data and Expertise derived Health Indices
 - Outperform simple Heuristics
 - Capture valuable knowledge
- Health Indices provide
 - Context
 - Transparent decision making
- There is a way to make use of the information that come from forensic cable analyses

